Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

نویسندگان

  • Tarek Lajnef
  • Sahbi Chaibi
  • Perrine Ruby
  • Pierre-Emmanuel Aguera
  • Jean-Baptiste Eichenlaub
  • Mounir Samet
  • Abdennaceur Kachouri
  • Karim Jerbi
چکیده

BACKGROUND Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. NEW METHOD Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. RESULTS The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. COMPARISON WITH EXISTING METHODS The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. CONCLUSION The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Automatic Construction Algorithm for Multi-class Support Vector Machines with Binary Tree Architecture

Multi-class support vector machines with binary tree architecture (SVM-BTA) have the fastest decision-making speed in the existing multi-class SVMs. But SVM-BTA usually has bad classification capability. According to internal characteristics of feature samples, this paper uses resemblance coefficient method to construct automatically binary tree to incorporate multiple binary SVMs. The multi-cl...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Musical genre classification using support vector machines

Automatic musical genre classification is very useful for music indexing and retrieval. In this paper, an efficient and effective automatic musical genre classification approach is presented. A set of features is extracted and used to characterize music content. A multi-layer classifier based on support vector machines is applied to musical genre classification. Support vector machines are used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 250  شماره 

صفحات  -

تاریخ انتشار 2015